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Taming Generative Synthetic Data for X-ray
Prohibited Item Detection

Jialong Sun, Hongguang Zhu, Weizhe Liu, Yunda Sun, Renshuai Tao and Yunchao Wei

Abstract—Training prohibited item detection models requires
a large amount of X-ray security images, but collecting and
annotating these images is time-consuming and laborious. To ad-
dress data insufficiency, X-ray security image synthesis methods
composite images to scale up datasets. However, previous methods
primarily follow a two-stage pipeline, where they implement
labor-intensive foreground extraction in the first stage and then
composite images in the second stage. Such a pipeline introduces
inevitable extra labor cost and is not efficient. In this paper,
we propose a one-stage X-ray security image synthesis pipeline
(Xsyn) based on text-to-image generation, which incorporates two
effective strategies to improve the usability of synthetic images.
The Cross-Attention Refinement (CAR) strategy leverages the
cross-attention map from the diffusion model to refine the
bounding box annotation. The Background Occlusion Modeling
(BOM) strategy explicitly models background occlusion in the
latent space to enhance imaging complexity. To the best of our
knowledge, compared with previous methods, Xsyn is the first
to achieve high-quality X-ray security image synthesis without
extra labor cost. Experiments demonstrate that our method
outperforms all previous methods with 1.2% mAP improvement,
and the synthetic images generated by our method are beneficial
to improve prohibited item detection performance across various
X-ray security datasets and detectors.

Index Terms—Image Generation, Synthetic Data, X-ray Secu-
rity Image Synthesis, X-ray Prohibited Item Detection.

I. INTRODUCTION

UTOMATIC prohibited item detection [1]-[7] aims to

detect all contraband from a single X-ray security im-
age. Training such models usually requires a large amount
of annotated data, but both collecting and annotating X-ray
security images are time-consuming and laborious, resulting
in a high labor cost for obtaining well-annotated images.
For example, collecting a single image from X-ray security
inspection equipment can take up to one minute, and multiple
rounds of iterative labeling by professional annotators further
increase time costs.

To reduce the cost of collecting hand-annotated X-ray secu-
rity images, utilizing synthetic data has emerged as an effective
way. Previous X-ray image synthesis methods mainly utilize
two methods to synthesize images: Threat Image Projection-
based (TIP-based) synthesis [8], [9] and Generative Adver-
sarial Network-based (GAN-based) synthesis [10]-[14]. 1)
TIP-based synthesis involves fusing the prohibited item with
the background image through morphological operations [8]
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Fig. 1: Analysis of existing X-ray security image synthesis
methods. Previous two-stage synthesis methods introduce in-
evitable labor cost in the first stage (e.g, foreground prepa-
ration process), which hinders the efficiency of the whole
synthesis pipeline. In contrast, Xsyn is a simple and effective
one-stage synthesis pipeline, which can automatically refine
the synthetic annotation and enhance the synthetic complexity,
thereby generating high-quality synthetic data and eliminating
extra labor costs.

or an image fusion neural network [9]. However, it either
requires laborious mask annotation for foreground extraction
or time-consuming Foreground Threat Image (FTI) collection
for fusion network training. 2) GAN-based synthesis enriches
the foreground diversity by adopting GAN [10] to generate
prohibited items with varying poses and shapes. However,
training GAN on foreground images also brings inevitable
extra labor cost on data collection and annotation (e.g, FTI
collection [11], trimap [13], and semantic label [14]).

As shown in Figure 1, we analyze existing X-ray security
image synthesis methods, observing that there is one common
limitation in previous methods: they all suffer from inevitable
extra labor (e.g, FTI collection and annotation). We argue
that this limitation stems from the fact that previous methods
primarily follow a two-stage synthesis pipeline, where the
first stage involves extracting foregrounds for the second
synthesis stage, thus introducing inevitable extra labor shown
in Figure 1 (a). For instance, TIP-based methods directly
extract image foregrounds, and GAN-based methods imitate
these foregrounds on the basis of extraction. Therefore, the
question arises: Can we achieve high-quality X-ray security
image synthesis without extra labor?

In this paper, we propose a simple and effective one-stage
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X-ray security image synthesis (Xsyn) pipeline to eliminate
extra labor cost. The basic idea is illustrated in Figure 1
(b). Our method is based on the text-grounded inpainting
pipeline, which requires no extra labor cost and can generate
high-quality X-ray security images by bridging the generative
power of the diffusion model and the perception capability
of SAM [15]. Specifically, we fine-tune the layout-to-image
diffusion model through text-grounded inpainting training and
then inpaint X-ray security images by providing grounding
conditions (e.g, bounding boxes with class names). To refine
synthetic annotations of the generated X-ray security images,
we propose Cross-Attention Refinement (CAR), which re-
fines the bounding box through the cross-attention map from
the diffusion model. By designing a median point sampling
strategy based on the most class-discriminative part of the
cross-attention map, we augment the bounding box prompt
and input it to SAM, thus obtaining precise position predic-
tion. Considering the common background occlusion in real-
world baggages, we further introduce Background Occlusion
Modeling (BOM) to enhance synthetic complexity, which
explicitly models background occlusion in the latent space of
the diffusion model. We propose to automatically search the
background occluder and then fuse the background occluder
with the foreground parts of the latent at the end of the denois-
ing process. With the above strategies, our synthesis method
can generate high-quality X-ray security images without labor-
intensive cost. These synthetic images can be used to train
prohibited item detection models, supplementing real images.
To summarize, our contributions are threefold:

e We propose Xsyn, a simple and effective one-stage
synthesis pipeline in the X-ray security domain. To the
best of our knowledge, Xsyn is the first to achieve high-
quality X-ray security image synthesis without incurring
additional labor-intensive foreground preparation.

o« We present two effective strategies to enhance the us-
ability of synthetic data. The CAR strategy automatically
refines the synthetic image annotations, and the BOM
strategy explicitly models the background occlusion in X-
ray security images to enhance their imaging complexity.

o Experiments on public X-ray security datasets demon-
strate that the generated images from our synthesis
pipeline are beneficial to improve prohibited item detec-
tion performance.

II. RELATED WORK

X-ray Security Image Synthesis. Prohibited item detection
models require a large amount of data. Considering the training
need, X-ray security image synthesis [8], [9], [11]-[14] has
emerged as an effective way to deal with data insufficiency. It
can mainly be categorized into two ways: TIP-based synthe-
sis [8], [9] and GAN-based synthesis [11]-[14]. 1) TIP-based
synthesis augments X-ray imagery datasets by superimposing
prohibited items onto available X-ray security baggage images.
For example, TIP [8] blends isolated threat objects onto
benign X-ray images through multistage morphological opera-
tions and composition. RWSC-Fusion [9] trains an end-to-end
region-wise style-controlled fusion network that superimposes

prohibited items onto normal X-ray security images to synthe-
size realistic composite images. 2) GAN-based synthesis aims
to directly generate prohibited items. Yang [13] proposes to
extract prohibited items with KNN-matting [16] and improve
CT-GAN [17] for prohibited item generation. Li [14] presents
a GAN-based method for synthesizing X-ray security images
with multiple prohibited items by establishing a semantic label
library. Zhu [11] propose an improved Self-Attention GAN
(SAGAN) [18] to generate diverse X-ray images of prohibited
items and integrate them with background images. However,
the aforementioned methods all suffer from inevitable extra
labor costs, including time-consuming FTT collection [8], [9],
[11], mask [8], trimap [12], [13], and semantic label [14]
annotation cost. In contrast to previous methods, our method
removes extra labor costs and can generate high-quality X-ray
security images through an automatic synthesis pipeline.

Generative Data Synthesis for Detection. A series of
methods [19]-[23] have utilized generative models for de-
tection data generation in the natural image domain, and
can mainly be divided into two manners [19]: copy-paste
synthesis [20], [22] and layout-to-image (L2I) generation [19],
[23], [24]. 1) Copy-paste synthesis aims to generate separate
foreground objects and fuse them with background images.
Ge [20] decouples detection data generation into foreground
object mask generation and background image generation
through DALL-E [25]. Zhao [22] leverages CLIP [26] and
Stable Diffusion [27] to obtain images with accurate categories
for copy-paste synthesis. However, copy-paste synthesis re-
quires separate foreground image generation, which can bring
inevitable extra labor costs in the X-ray security domain.
2) The L2I methods, on the other hand, directly generate
the whole image with objects from the layout instruction
(e.g, bounding boxes with object categories), avoiding the
need to generate foregrounds separately. To achieve better
controllable generation, GLIGEN [24] integrates a novel gated
self-attention mechanism into text-to-image diffusion models
for better layout control. GeoDiffusion [19] further translates
geometric conditions into text prompts to generate high-quality
detection data. To eliminate the extra labor cost, our method is
built upon layout-to-image generation, but extends it into text-
grounded inpainting to deal with the background distribution
discrepancy in the X-ray security domain, and distinctively
proposes two effective strategies to improve the usability of
generated images.

III. PRELIMINARY

Latent Diffusion Model [27] is a kind of diffusion model
that performs the diffusion process in the latent space for text-
to-ignagg generation. Specifically, given a noisy latent z, €
RH XW XC at each timestep ¢ € {0,...,T — 1}, a denoising
UNet [28] €y(-) is trained to recover its clean version zg by
predicting the added noise, and the training objective can be
formulated as follows:

Lrpm =By con01).ell€ — €o(ze, t,0)|? (D

where e is the added random Gaussian noise and c is the gen-
eralized condition. For text-to-image generation, ¢ is the text
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Ground Truth Direct L2I
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Fig. 2: Qualitative comparisons between L2I generation and
grounded inpainting. The background of the L2I-generated
image (middle) differs a lot from the real-world baggage (left),
which may hinder the detection performance. Therefore, we
choose grounded inpainting (right) to retain the background.

prompt which will be encoded by a pre-trained CLIP [26] text
encoder. For layout-to-image generation, ¢ further incorporates
the grounding condition (e.g, bounding boxes with categories).

Eq. 1 can be further reformulated to support inpainting
tasks. Specifically, given an inpainting mask m and the input
image, the input image latent z{"*"* can be extracted by a
pre-trained Vector Quantized Variational AutoEncoder (VQ-
VAE) [29], and its masked version zg“”’“ is the multiplication
of 2, and m"***¢, where m"***¢ is obtained by resizing
m to the latent size. Based on [24], the input for UNet is
expanded as z;"?*"" = Concat(z;, z]**** , m"***¢), which is
fed into Eq. 1 to replace z; for inpainting training. Then, at
each sampling step t, the noisy latent z, is updated as follows

before denoising:

A . A
Ty = T4 % (1 . mreszze) + Z;npu * m"est7e (2)
i t . . . ; +

where z;"""" is the noisy version of zy"""".

IV. METHODOLOGY
A. Generation Pipeline

Previous L2I methods [19], [23] in the natural image
domain directly use the generated images as synthetic data.
However, we find that such an approach is not feasible in
the X-ray security image domain since the background of the
generated image is uncontrollable and its distribution deviates
significantly from that of the real background, as shown in
Figure 2. To avoid the above problem, we base the generation
pipeline on text-grounded inpainting.

In general, given an X-ray security image I € RH*Wx3,
a text prompt Y, and a grounding condition G, the text-
grounded inpainting process can be formulated as a function
I* = F(1,Y,G). The grounding condition G = {(e;, ;) }},,
where e; represents the textual description of the object (e.g,
class name), and [; = [z;1,¥i1, %2, Y 2] denotes the i-th
grounding box (i.e, top-left and bottom-right coordinates). The
output is an image with the grounding region being repainted,
as specified by the text prompt Y and the grounding condition
G.

To generate a new X-ray security image, we design two
kinds of grounding conditions G,,,q and G,qq based on the
image annotation L, where L = {(c;, b;)},, ¢; represents the
class name, and b; represents the i-th annotation box, sharing
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Fig. 3: Cross-Attention Refinement. To obtain the spatial-
aligned annotation, we leverage SAM to locate the generated
prohibited item based on the rich class-discriminative spatial
localization information in the cross-attention map. Please see
how the bounding box (blue box) of the generated item is
refined.

the same format as the grounding box. Specifically, we first
let G 04 = L so that we can reuse the annotation and modify
the geometry of the original prohibited items (e.g, shape and
pose). To add a new prohibited item to an image, we first use
SAM to segment all elements within the image. Subsequently,
we discard the two largest masks by area to prevent out-of-
boundary generation. Because they typically correspond to the
background and the whole baggage region. Then we select an
idle region [, from the rest masks randomly, and [, satisfies
the following criterion,

lhe{leS|dis(l,b;) <d,i=1,2,...,N}, 3)

where S = {s;} |, s; is the bounding box of the kth
object segmented by SAM in image I, dis(-,-) measures the
IoU between two bounding boxes and d is the pre-defined
threshold. In practice, boxes that are too small will be filtered
out. Then we select a category c; for I, from a class group
which corresponds to specific region areas(refer to the supple-
mentary material) and let e, = ¢} to obtain Gaaqq = {(€p,p)}-
By concatenating the class names as the text prompt, we get
Yimod = Concat({c;}Y.;) and Y,44 = {e,}. Finally, we can
generate a new image in two different ways as follows,

:;wd = F(I, Yinod; Gmod)a @)

:zkdd = F(Ia Yadd7 Gadd)

Therefore, we can construct two variants of synthetic data
using Eq. 4, named Xsyn-M and Xsyn-A, respectively. This
generation pipeline has two advantages. First, it does not re-
quire any extra labor cost (e.g, FTI collection) compared with
previous synthesis methods. Second, it focuses on generating
foreground items by altering only a portion of the background,
without affecting the overall distribution.

B. Cross-Attention Refinement

Because it is hard for the generated item to be tightly
within the grounding box, directly using the grounding box
as the annotation box to train detection models will lead
to performance degradation of downstream tasks. Instead of
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Fig. 4: Median Point Sampling. Considering the background
in the bounding box may interfere with the refinement, we
propose to enhance the localization by sampling median points
as foreground points in a recursive manner. Different colors
refer to different division levels.

forcing the generative model to generate spatially aligned
items, we retain the generated item and propose CAR to refine
its location to obtain the aligned annotation.

Given an input X-ray security image, we first inpaint it
using the proposed generation pipeline. Directly using SAM
to refine the location by taking the grounding box as input
is suboptimal (refer to Table V), because the background can
affect the performance of SAM. To address the above issue,
we step out of the image domain and propose CAR based
on the cross-attention map in the diffusion model. Figure 3
shows the process of CAR. For simplicity, we only discuss the
refinement process for one generated item. For the generated
item corresponding to g; = (e;, ;) € G, we obtain the average
cross-attention map M; € R¥*W from the diffusion model for
the text token corresponding to e¢;. The CAR process takes as
input the generated image I*, the cross-attention map M;, and
the grounding location [;. The output is the refined annotation
location for the generated item. Specifically, we first obtain the
most class-discriminative region r; by using SAM to segment
M, within [;. To help SAM better locate the generated item
based on [;, we then propose a median point sampling strategy
to sample points P; from /; and combine these points with ;
as prompt P; for SAM to locate the generated item, where

Median Point Sampling (MPS). Figure 4 depicts the basic
idea of median point sampling. We aim to sample foreground
points inside r; and background points outside r;. Specifically,
we choose the point with the minimum activation value outside
r; as the background point p?. To sample foreground points,
we first sort all points within r; by their activation values
and choose the median point pzf ' as the first foreground
point. Then we divide r; into two sub-regions r} and 72,
where the activation values in r} are all below that of p‘if ',
and the activation values in r? are all above that of p{ L
By extension, we perform the same sort-and-divide operation
on the subsequent sub-regions recursively and gather all the
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Fig. 5: Background Occlusion Modeling. BOM performs oc-
clusion through regional recombination in the latent space.
For simplicity, we omit other variables and components of the
diffusion model since the whole generation process has been
elaborated.

median points as foreground points. Therefore, we obtain

the final point set P; = {pfl p{z, .. ,p{zn*l Yo ,pf"’l,p'g}

i b
which has 2" — 1 foreground points and one background point
in total, where n indicates the division times. For example, the
red, orange, and green points in Figure 4 are in the 1st, 2nd,
and 3rd divisions, respectively. We argue that median points
describe the central tendency of data points belonging to the
prohibited item, which are less affected by extreme activation
values in the cross-attention map.

Finally, the refinement process uses SAM to segment I* by
taking P; as visual prompts and assigns the bounding box of
the segmented region to be the annotation box, thus obtaining
more precise location prediction for the generated item. The
CAR strategy takes advantage of the segmentation capability
of SAM and the cross-attention map of the diffusion model
to obtain the refined bounding box annotation. Despite its
simplicity, our CAR strategy can achieve automatic annotation
refinement that benefits prohibited item detection performance.

C. Background Occlusion Modeling

The generated prohibited items are too clear, which is
inconsistent with complex real-world occlusion scenarios and
may induce overfitting problems for detection. To address the
above problem and further enrich the imaging complexity
of synthetic images, we simulate the common background
occlusion in real baggage by applying background occlusion
modeling shown in Figure 5, which fuses the specified back-
ground region with foreground regions in the latent space to
occlude prohibited items.

Specifically, given an input X-ray security image I, we
first select an occluder from the background in pixel space
by using SAM to segment every object in I, and use Eq. 3
to determine the location of the occluder'. Next, we adopt
the proposed generation pipeline to inpaint I but slightly
modify the latent sampli/ng process. As shown in Figure 5,
a noisy latent z € R XW XC sampled from the standard
normal distribution A/(0, 1) is passed to the denoising UNet,

'Eq. 3 used here is reformed as I, € {l € S | dis(l,b;) < d, dis(l,1p) <
d,i=1,2,...,N} if we use Ggqq.
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to obtain the denoised latent z, after 1" steps of denoising. If
we directly decode z, to the pixel space, then we will get the
original result with no occlusion. To occlude the prohibited
item, we perform a weighted recombination of the occluder
region and foreground regions in latent space for one more
step as follows:

=2 xa+z)x(1—a) (5)
#, = Crop(zo, 1) ©6)
7 = Crop(zo,1,,) (7

where if) and ig is the j-th occluded foreground region and
the occluder region of zg respectively. o adjusts the degree
of occlusion. C'rop(-) represents the process of cropping zo
to the region corresponding to the occluded region l;» or the

. ’ ’ ’ ’ ’ ’ ’
occluder region lo, Where 1, = [7,1,Y0.15 T2, Yp2ls and 1
can be obtained as follows:

l; € {Re(l;,1,) | l; e GUL,j=1,2,....M+ N} (8

where Re(-) first projects /; to latent space and then perturbs
it as follows:

Jc;l = Rand(Maa:(x;)l — w;, 0),33‘;72),
y;ﬂ = Rand(Max(y;’1 — hlo, 0),y;-72),
x;)Q = Mm(m;l + w;, VV/)7

y;,z = Mm(y;l + h:)? Hl)

©))

where Rand(-) randomly samples an integer between the
lower bound and the upper bound. wlo and h; is the width and
height of [, respectively. We let l;- = [x;71,y;717x;-72,y;72] be
the j-th occluded region. The hidden version of z, is termed
as z!. Finally, we decode z}! to pixel space and obtain the
hidden result shown in Figure 5.

Through the regional recombination enabled by BOM, the
foreground region can be occluded by a random item from
the background, which enhances the imaging complexity of
synthetic images. It is worth noting that the original result in
Figure 5 is used by CAR to obtain the refined annotation, and
we adopt the hidden result as the final synthetic image.

V. EXPERIMENTS
A. Experimental Setups

Datasets. We conduct experiments on three widely used
X-ray security datasets: PIDray [30], OPIXray [31], and
HiXray [32]. The details of datasets can be found in the
supplementary material.

Implementation Details. Generation. We base the gen-
eration pipeline on GLIGEN [24]. Specifically, we finetune
GLIGEN for 180K steps for text grounded generation training
and 50K steps for inpainting training with the batch size set to
8. During inference, we sample images using the DDIM [33]
scheduler for 50 steps with the classifier-free guidance (CFG)
set as 7.5. Synthetic images for training. Taking data annota-
tions of the training set as input, we generate synthetic images
using the proposed generation pipeline and apply CAR and
BOM to these images. Specifically, we construct two variants

of synthetic images, named Xsyn-M and Xsyn-A, respectively.
To prevent the disparities in generated data from affecting the
model’s generalization on real data, we combine the generated
images with real images as the final training set, as adopted in
DetDiffusion [23]. The spatial resolution of synthetic images
is 512x512. Detection. We use MMDetection [34] to train
downstream detectors. DINO [35] detector with ResNet-50
backbone is used to evaluate the dataset following the default
DINO configuration of MMDetection. For all detectors, we
uniformly train them for 6 epochs. 4 NVIDIA RTX 3090
GPUs are used for all experiments. More implementation
details can be found in the supplementary material.
Evaluation Metrics. Mean average precision (mAP), as
the common metric in object detection tasks [36], is used
to evaluate the performance. We also evaluate AP for each
category and for different occlusion levels on PIDray.

B. Main Results

In this section, we evaluate the performance of the proposed
synthesis method for object detection training by supple-
menting real images with synthetic images generated by our
method. To this end, we first compare our approach with
previous methods on the PIDray dataset, and then investigate
the potential of synthetic data by varying the amount of real
images. Finally, we test the effectiveness of our method across
various X-ray security datasets and detectors.

Setup. For both Xsyn-M and Xsyn-A generations, we filter
out the bounding boxes smaller than a threshold ratio of the
image area, and the threshold ratio is 0.1%, 0.4%, and 0.5% for
PIDray, OPIXray, and HiXray, respectively. For comparison
experiments, we compare Xsyn-M with synthesis methods of
the natural image domain and Xsyn-A with previous labor-
intensive X-ray security image synthesis methods.

Comparisons with previous methods. Table I shows the
results of object detection on PIDray dataset. Our Xsyn-M
achieves superior performance compared with methods in
the natural image domain, revealing the advantages of the
proposed synthesis pipeline. Besides, Xsyn-M can achieve
a competitive performance, i.e, 69.1% v.s. 69.5% for mAP
compared with SAGAN [18], and Xsyn-A can further surpass
it by 1.2% mAP. It is worth noting that our synthetic data
does not require additional labor compared with previous
methods, while data produced by TIP [8], CT-GAN [17], and
SAGAN [18] rely on laborious pixel-wise foreground extrac-
tion. Both Xsyn-M and Xsyn-A show consistent improvement
for almost all classes, especially for some difficult classes (e.g,
+7.2% for Gun with Xsyn-A).

Potential of synthetic data. As shown in Figure 6, we plot
the validation mAP curve on PIDray, and the synthetic data
generated by our method has better training efficiency com-
pared with previous methods. It indicates that our synthetic
data has learned the distribution of X-ray prohibited items and
can lead a faster training convergence.

Performance on more datasets and detectors. We extend
the evaluation of our method on the OPIXray and HiXray
datasets, respectively. The results in Table II demonstrate that
our method improves detection performance across various
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TABLE I: Comparisons on PIDray dataset. We compare our approach with previous synthesis methods using DINO with
ResNet-50 backbone on the PIDray dataset. ‘Easy’, ‘Hard’, and ‘Hidden’ refer to different levels of detection difficulty. ‘BA’,
‘PL’, ‘HM’, ‘PO’, ‘SC’, ‘WR’, ‘GU’, ‘BU’, ‘SP’, ‘HA’, ‘KN’ and ‘LI’ suggest Baton, Pliers, Hammer, Powerbank, Scissors,
Wrench, Gun, Bullet, Sprayer, HandCuffs, Knife and Lighter, respectively. *: represents the original L2I generation setting.

Method Average Precision?

mAP APso Easy Hard Hidden | BA  PL HM PO SC WR GU BU SP HA KN LI
Real only | 684 817 740 69.7 521 | 762 86.1 839 748 721 906 296 622 562 89.6 387 61.0
TIP [8] 69.0 82.0 749 709 51.1 759 864 840 747 745 914 274 632 592 895 43.1 588
CT-GAN [17] 694 824 753 710 521 759 864 837 740 732 91.8 354 622 593 902 395 60.8
SAGAN [18] 69.5 822 750 709 535 762 88.1 850 752 745 91.7 29.6 625 61.7 89.8 40.7 595
GeoDiffusion [19] | 64.6 784 71.6 646 476 | 72.6 822 788 73.6 69.8 881 251 575 562 867 280 56.6
GLIGEN* [24] 649 786 731 652 453 | 720 832 766 714 694 880 280 57.6 556 884 325 56.1
Xsyn-M 69.1 8.1 755 708 507 | 734 865 842 758 729 910 355 63.6 602 89.8 36.1 60.0
Xsyn-A 70.7 838 768 717 541 | 767 856 851 761 748 91.7 368 641 635 892 445 60.1
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Fig. 6: Potential of synthetic data. Our synthetic data achieves
the best detection performance throughout the whole training
period.

TABLE II: Performance on OPIXray and HiXray. Our method
is effective for various X-ray security datasets.

Dataset | Setting | mAP  APso  APrs
OPIXray [31] Real only 39.5 90.2 26.0
+Xsyn-A 40.1 90.1 26.1
HiXray [32] Real only 49.3 834 532
+Xsyn-A 50.4 83.9 55.5

datasets. We further conduct experiments on various detectors,
including CNN-based and Transformer-based [37] architec-
tures, to evaluate the generalization ability. As shown in
Table III, our synthetic images achieve consistent improvement
regardless of the detection models.

C. Ablation Study

In this section, we conduct ablation studies on the proposed
strategies and their specific design choices, respectively. We
first ablate the parameter setting of CAR, and then ablate BOM
on the basis of CAR. All ablation studies are conducted on

TABLE III: Performance on various detectors. Our method can
improve prohibited item detection performance consistently,
regardless of detectors and backbone architectures.

Type Stage Method Backbone ‘ mAP APs5q APrs5
one ATSS R101 65.2 80.8 72.6
+Xsyn-A  R101 65.5 81.3 73.0
CNN-based C-RNN R101 68.0 82.6 75.5
wo +Xsyn-A  R101 69.1 83.4 76.4
C-RNN X101 69.6 83.7 77.0
+Xsyn-A X101 70.2 84.3 77.4
DINO R50 68.4 81.7 73.5
Transformer-based +Xsyn-A RSQ 70.7 83.8 76.7
DINO Swin 76.1 88.6 81.8
+Xsyn-A  Swin 78.1 89.9 83.5

TABLE IV: Ablation studies on proposed strategies. We first
add CAR and then BOM to investigate their performance
separately. Best results are achieved when both strategies are
adopted.

Method | mAP  APso  APr;
Real only 68.4 81.7 73.9
+Xsyn-A (w/o CAR) 69.6 82.3 75.5
+Xsyn-A (w/o BOM) 70.3 83.1 76.0
+Xsyn-A 70.7 83.8 76.7

the best-performing Xsyn-A, and PIDray dataset is used for
all experiments.

The proposed strategies. Table IV presents the impact of
the proposed strategies. We analyze the effect of each proposed
strategy by sequentially adding 1) CAR and 2) BOM. The
results demonstrate the relative importance of each strategy,
with all strategies performing the best.

Hyper-parameters of proposed strategies. Median point
sampling. Table V (upper) shows the performance of CAR
using different division times n, where n = 0 means that
we only use the grounding box to implement refinement. The
gain reaches its biggest when n = 4, indicating the benefit
of incorporating median points and suggesting that MPS has
good scalability for annotation refinement. We set n to 4
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Fig. 7: Qualitative results on PIDray dataset. Our method can synthesize well-annotated and realistic X-ray security images.
The blue boxes in the 3rd column and the last two columns refer to the input grounding boxes and the refined annotation

boxes, respectively. Please zoom in for better visualization.

TABLE V: Ablations on hyper-parameters of proposed strate-
gies. We ablate the choice of division times n for CAR and
latent occlusion coefficient o for BOM respectively on Xsyn-
A.

Type ‘ Setting ‘ mAP APsg AP75
0 69.7 82.5 75.6
1 69.9 82.7 759

CAR-n 2 70.1 83.0 759
3 70.2 82.8 76.0
4 70.3 83.1 76.0
0.1 70.3 83.1 76.3

BOM-or 0.3 70.7 83.8 76.7
0.5 70.2 82.8 76.0
0.7 69.8 82.5 75.5

TABLE VI: BOM ablations on occlusion space and period.

| Period | mAP  APs5o  APr;

Latent Space ‘ 69.9 82.9 75.5
70.7 83.8 76.7

Pixel Space | - | 699 827 758

for other experiments. Latent occlusion coefficient. Table V
(bottom) provides the ablation study for occlusion coefficient
a. The performance increases when a changes from 0.1 to 0.3,
while it decreases from 0.3 to 0.7. The result suggests that
a medium occlusion coefficient is beneficial to enhance the
imaging complexity, while a too small or too large occlusion
coefficient cannot model the complex occlusion in real-world
baggage. Therefore, the optimum « is set to 0.3 for better
imaging complexity enhancement.

Occlusion space and period. The ablation study for oc-
clusion space and period is shown in Table VI. We fuse
the occluder region with foreground regions in the original
image to implement occlusion modeling in pixel space. The

result shows that modeling occlusion in latent space achieves
better performance than in pixel space. We also investigate
the influence of the occlusion period by modeling occlusion
at each denoising step ¢, but the performance is much lower
than the original version. We argue that such an approach may
destroy the distribution of foregrounds in the cross-attention
map, thus affecting the process of CAR.

D. Qualitative Results

We provide qualitative results on the PIDray dataset shown
in Figure 7. The original results in the 3rd column have
obvious spatial misalignment between the generated prohibited
item and the bounding box. When we apply CAR to the
original results, the bounding box is refined to enclose the
prohibited item tightly, as shown in the 4th column. We further
enhance the imaging complexity in the 5th column by using
BOM to occlude the prohibited item. It is worth mentioning
that we perform CAR on the original image and apply BOM
to obtain the hidden image, which ensures that the annotation
refinement will not be compromised by the introduction of
occlusion.

VI. CONCLUSION

In this paper, we propose Xsyn, a simple and effective
one-stage X-ray security image synthesis pipeline to generate
high-quality prohibited item detection data. In contrast to the
previous two-stage methods, for the first time, our method
removes the labor-intensive foreground extraction procedure.
To improve the usability of generative synthetic data, our
method incorporates two effective strategies to automatically
refine the synthetic annotation and enhance the synthetic
complexity. The synthetic images generated by our method
can improve the prohibited item detection performance across
various public datasets and detectors. We hope Xsyn can
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bring new inspiration for exploiting the potential of generative
synthetic data in the X-ray security domain.
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